Lecture Notes, March 30, 2011

Mathematical Logic

Logical Inference

Let A and B be two logical conditions, like A="it's sunny today" and B="the light outside is very bright"

 $A \Rightarrow B$

A implies B, if A then B

 $A \Leftrightarrow B$

A if and only if B, A implies B and B implies A, A and B are equivalent conditions

Proofs

Just like in high school geometry.

Concept of Proof by contradiction: Suppose we want to show that $A \Rightarrow B$. Ordinarily, we'd like to prove this directly. But it may be easier to show that $[not (A \Rightarrow B)]$ is false. How? Show that [A & (not B)] leads to a contradiction. A: x = 1, B:x+3=4. Then [A & (not B)] leads to the conclusion that $1+3\neq 4$ or equivalently $1\neq 1$, a contradiction. Hence [A & (not B)] must fail so $A\Rightarrow B$. (Yes, it does feel backwards, like your pocket is being picked, but it works).

Set Theory

```
Definition of a <u>Set</u>
```

```
{ } \{x \mid x \text{ has property P}\}\ {1, 2, ..., 9, 10} = { x \mid x \text{ is an integer, } 1 \le x \le 10 }.
```

Elements of a set

```
x \in A; y \notin A

x \neq \{x\}

x \in \{x\}

\phi \equiv the empty set (\equiv null set), the set with no elements.
```

Subsets

```
A \subset B \text{ or } A \subseteq B \text{ if } x \in A \implies x \in B
A \subset A \text{ and } \phi \subset A.
```

Set Equality

```
A = B if A and B have precisely the same elements A = B if and only if A \subset B and B \subset A.
```

Prof. R. Starr Spring 2011

Set Union

$$A \cup B$$

 $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ ('or' includes 'and')

Set Intersection

$$\cap$$

 $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
If $A \cap B = \emptyset$ we say that A and B are disjoint.

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Theorem 6.1: Let A, B, C be sets,

a.
$$A \cap A = A, A \cup A = A$$
 (idempotency)
b. $A \cap B = B \cap A, A \cup B = B \cup A$ (commutativity)
c. $A \cap (B \cap C) = (A \cap B) \cap C$ (associativity)
 $A \cup (B \cup C) = (A \cup B) \cup C$
d. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (distributivity)

Complementation (set subtraction)

Cartesian Product

ordered pairs

$$A \times B = \{(x, y) \mid x \in A, y \in B\} .$$
Note: If $x \neq y$, then $(x, y) \neq (y, x)$.

 \mathbf{R} = The set of real numbers

 $\mathbf{R}^{N} = N$ -fold Cartesian product of R with itself.

 $\mathbf{R}^{N} = R \times R \times R \times \dots \times R$, where the product is taken N times.

The order of elements in the ordered N-tuple (x, y, ...) is essential. If $x \neq y, (x, y, ...) \neq (y, x, ...)$.

R^N, Real N-dimensional Euclidean space

Read Starr's General Equilibrium Theory, Chapter 7.

 R^2 = plane

 $R^3 = 3$ -dimensional space

 $R^{N} = N$ -dimensional Euclidean space

Definition of R:

$$R =$$
the real line $\pm \infty \notin R$

$$+, -, \times, \div$$

closed interval : $[a, b] \equiv \{x | x \in R, a \le x \le b\}.$

R is complete. Nested intervals property: Let $x^{v} < y^{v}$ and $[x^{v+1}, y^{v+1}] \subseteq [x^{v}, y^{v}]$, $v = 1, 2, 3, \dots$ Then there is $z \in R$ so that $z \in [x^{v}, y^{v}]$, for all v.

 $R^N = N$ -fold Cartesian product of R.

$$x \in \mathbb{R}^N$$
 , $x = (x_1, x_2, ..., x_N)$

 x_i is the ith co-ordinate of x.

 $x = point (or vector) in R^{N}$

Algebra of elements of R^N

$$x + y = (x_1 + y_1, x_2 + y_2, ..., x_N + y_N)$$

 $\mathbf{0} = (0, 0, 0, \dots, 0)$, the origin in N-space

$$x - y \equiv x + (-y) = (x_1 - y_1, x_2 - y_2, ..., x_N - y_N)$$

 $t \in R$, $x \in R^N$, then $tx \equiv (tx_1, tx_2, ..., tx_N)$.

 $x, y \in \mathbb{R}^N$, $x \cdot y = \sum_{i=1}^N x_i y_i$. If $p \in \mathbb{R}^N$ is a price vector and $y \in \mathbb{R}^N$ is an economic action, then $p \cdot y = \sum_{n=1}^{N} p_n y_n$ is the value of the action y at prices p.

Norm in R^N, the measure of distance

$$|x| \equiv ||x|| \equiv \sqrt{x \cdot x} \equiv \sqrt{\sum_{i=1}^{N} x_i^2}$$
.

Let $x, y \in \mathbb{R}^N$. The distance between x and y is ||x - y||.

$$|\mathbf{x} - \mathbf{y}| = \sqrt{\sum_{i} (x_i - y_i)^2} .$$

$$||\mathbf{x} - \mathbf{y}|| \ge 0 \text{ all } x, \ y \in \mathbb{R}^N.$$

$$||x - y|| \ge 0$$
 all $x, y \in R^N$

|x - y| = 0 if and only if x = y.

Limits of Sequences

$$x^{\nu}$$
, $\nu = 1, 2, 3, ...$,

Example: $x^{v} = 1/v$. 1, 1/2, 1/3, 1/4, 1/5, ... $x^{v} \rightarrow 0$.

Formally, let $x^i \in R$, i = 1, 2, ... Definition: We say $x^i \to x^0$ if for any $\varepsilon > 0$, there is $q(\varepsilon)$ so that for all $q' > q(\varepsilon)$, $|x^{q'} - x^0| < \varepsilon$.

So in the example $x^{\nu} = 1/\nu$, $q(\varepsilon) = 1/\varepsilon$

Let $x^i \in R^N$, $i=1, 2, \ldots$. We say that $x^i \to x^0$ if for each co-ordinate $n=1, 2, \ldots, N, x_n^i \to x_n^0$.

Theorem 7.1: Let $x^i \in R^N$, $i = 1, 2, \ldots$ Then $x^i \to x^0$ if and only if for any ε there is $q(\varepsilon)$ such that for all $q' > q(\varepsilon)$, $||x^{q'} - x^0|| < \varepsilon$.

 x° is a cluster point of $S \subset \mathbb{R}^{N}$ if there is a sequence $x^{\vee} \in \mathbb{R}^{N}$ so that $x^{\vee} \to x^{\circ}$.

Open Sets

Let $X \subset \mathbb{R}^N$; X is *open* if for every $x \in X$ there is an $\varepsilon > 0$ so that $||x - y|| < \varepsilon$ implies $y \in X$.

Open interval in R: $(a, b) = \{ x \mid x \in R, a < x < b \}$

 ϕ and R^N are open.

Closed Sets

Example: Problem - Choose a point x in the closed interval [a, b] (where 0 < a < b) to maximize x^2 . Solution: x = b.

Problem - Choose a point x in the open interval (a, b) to maximize x^2 . There is no solution in (a, b) since $b \notin (a, b)$.

A set is closed if it contains all of its cluster points.

Definition: Let $X \subset R^N$. X is said to be a **closed** set if for every sequence x^v , v = 1, 2, 3, ..., satisfying,

(i)
$$x^{\vee} \in X$$
, and

(ii)
$$x^{v} \rightarrow x^{0}$$

it follows that $x^0 \in X$.

Examples: A closed interval in R, [a, b] is closed

A closed ball in R^N of radius r, centered at $c\!\in\!R^N,\ \{x\!\in\!R^N\!|\ |x\!-\!c|\!\leq\!r\}$ is a closed set.

A line in R^N is a closed set

But a set may be neither open nor closed (for example the sequence $\{1/\nu\}$, $\nu=1$, 2, 3, 4, ... is not closed in R, since 0 is a limit point of the sequence but is not an element of the sequence; it is not open since it consists of isolated points).

Note: Closed and open are not antonyms among sets. ϕ and R^N are each both closed and open. For a YouTube reference: www.youtube.com/watch?v=SyD4p8_y8Kw

Let
$$X \subseteq R^N$$
. The closure of X is defined as $\overline{X} \equiv \{ \ y \mid \text{there is } x^{\nu} \in X, \ \nu = 1, 2, 3, \dots \text{, so that } x^{\nu} \to y \ \}.$ For example the closure of the sequence in R , $\{1/\nu \mid \nu = 1, 2, 3, 4, \dots \}$ is $\{0\} \cup \{1/\nu \mid \nu = 1, 2, 3, 4, \dots \}.$

Theorem 7.2: Let $X \subset \mathbb{R}^N$. X is closed if $\mathbb{R}^N \setminus X$ is open.

Proof: Suppose $R^N \setminus X$ is open. We must show that X is closed. If $X=R^N$ the result is trivially satisfied. For $X \neq R^N$, let $x^v \in X$, $x^v \rightarrow x^o$. We must show that $x^o \in X$ if $R^N \setminus X$ is open. Proof by contradiction. Suppose not. Then $x^o \in R^N \setminus X$. But $R^N \setminus X$ is open. Thus there is an ε neighborhood about x^o entirely contained in $R^N \setminus X$. But then for v large, $x^v \in R^N \setminus X$, a contradiction. Therefore $x^o \in X$ and X is closed. QED

Theorem 7.3: 1.
$$X \subset \overline{X}$$

2. $X = \overline{X}$ if and only if X is closed.

Bounded Sets

Def: $K(k) = \{x | x \in \mathbb{R}^N, |x_i| \le k, i = 1, 2, ..., N\}$ = cube of side 2k (centered at the origin).

Def: $X \subset \mathbb{R}^N$. X is bounded if there is $k \in \mathbb{R}$ so that $X \subset K(k)$.

Compact Sets

THE IDEA OF COMPACTNESS IS ESSENTIAL!

Def: $X \subset \mathbb{R}^N$. X is *compact* if X is closed and bounded.

<u>Finite subcover property</u>: An open covering of X is a collection of open sets so that X is contained in the union of the collection. It is a property of compact X that for every open covering there is a finite subset of the open covering whose union also contains X. That is, every open covering of a compact set has a finite subcover.

Boundary, Interior, etc.

$$X \subset R^N$$
, Interior of $X = \{y | y \in X \text{, there is } \varepsilon > 0 \text{ so that } ||x - y|| < \varepsilon \text{ implies } x \in X\}$
Boundary $X \equiv \overline{X} \setminus \text{Interior } X$

Set Summation in R^N

Let
$$A \subseteq R^N$$
, $B \subseteq R^N$. Then $A + B \equiv \{ x \mid x = a + b, a \in A, b \in B \}$.

The Bolzano-Weierstrass Theorem, Completeness of \mathbb{R}^N .

Theorem 7.4 (Nested Intervals Theorem): By an interval in R^N , we mean a set I of the form $I = \{(x_1, x_2, ..., x_N) | a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2, ..., a_N \le x_N \le b_N, a_i, b_i \in R\}$. Consider a sequence of nonempty closed intervals I_k such that

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots \supseteq I_k \supseteq \ldots$$
.

Then there is a point in R^N contained in all the intervals. That is, $\exists x^o \in \bigcap_{i=1}^{\infty} I_i$ and therefore $\bigcap_{i=1}^{\infty} I_i \neq \emptyset$; the intersection is nonempty.

Proof: Follows from the completeness of the reals, the nested intervals property on R.

Corollary (Bolzano-Weierstrass theorem for sequences): Let x^i , i = 1, 2, 3, ... be a bounded sequence in \mathbb{R}^N . Then x^i contains a convergent subsequence.

Proof 2 cases: x^i assumes a finite number of values, x^i assumes an infinite number of values.

It follows from the Bolzano-Weierstrass Theorem for sequences and the definition of compactness that an infinite sequence on a compact set has a convergent subsequence whose limit is in the compact set.

12

Filename: 02-01.eps Percentage: 100 Height: 10.95747pc Width: 16.72897pc

12:

Filename: 02-02.eps Percentage: 100 Height: 13.63411pc Width: 16.89626pc

13: