Lecture Notes, March 30, 2011

Mathematical Logic

Logical Inference

Let A and B be two logical conditions, like $\mathrm{A}=$ "it's sunny today" and $\mathrm{B}=$ "the light outside is very bright"
$\mathrm{A} \Rightarrow \mathrm{B}$
A implies B, if A then B
$A \Leftrightarrow B$
A if and only if B, A implies B and B implies A, A and B are equivalent conditions
Proofs
Just like in high school geometry.
Concept of Proof by contradiction: Suppose we want to show that $\mathbf{A} \Rightarrow$ B. Ordinarily, we'd like to prove this directly. But it may be easier to show that $[$ not $(A \Rightarrow B)]$ is false. How? Show that $[A \&(n o t B)]$ leads to a contradiction. $A: x=1, B: x+3=4$. Then [A \& (not B)] leads to the conclusion that $1+3 \neq 4$ or equivalently $1 \neq 1$, a contradiction. Hence [A \& (not B)] must fail so $A \Rightarrow B$. (Yes, it does feel backwards, like your pocket is being picked, but it works).

Set Theory

Definition of a Set
\{ \}
$\{\mathrm{x} \mid \mathrm{x}$ has property P$\}$
$\{1,2, \ldots, 9,10\}=\{x \mid x$ is an integer, $1 \leq \mathrm{x} \leq 10\}$.
Elements of a set

```
\(x \in A ; y \notin A\)
\(x \neq\{x\}\)
    \(\mathrm{x} \in\{\mathrm{x}\}\)
    \(\phi \equiv\) the empty set ( \(\equiv\) null set), the set with no elements.
```

Subsets
$A \subset B$ or $A \subseteq B$ if $\mathrm{x} \in \mathrm{A} \Rightarrow \mathrm{x} \in \mathrm{B}$
$A \subset A$ and $\phi \subset A$.
Set Equality
$A=B$ if A and B have precisely the same elements
$\mathrm{A}=\mathrm{B}$ if and only if $A \subset B$ and $B \subset A$.

UCSD
Set Union
$A \cup B$
$A \cup B=\{x \mid \quad x \in A$ or $x \in B\} \quad$ ('or' includes 'and')
Set Intersection
\cap
$A \cap B=\{x \mid x \in A$ and $x \in B\}$
If $A \cap B=\phi$ we say that A and B are disjoint.
Theorem 6.1: Let A, B, C be sets,
a. $\quad A \cap A=A, A \cup A=A$
b. $\quad A \cap B=B \cap A, A \cup B=B \cup A$
c. $\quad A \cap(B \cap C)=(A \cap B) \cap C$
(idempotency)
c. $A \cup(B \cup C)=(A \cup B) \cup C$
d. $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(distributivity)

Complementation (set subtraction)
1
$A \backslash B=\{x \mid x \in A, x \notin B\}$
Cartesian Product
ordered pairs
$A \times B=\{(x, y) \mid x \in A, y \in B\}$.
Note: If $\mathrm{x} \neq \mathrm{y}$, then $(\mathrm{x}, \mathrm{y}) \neq(\mathrm{y}, \mathrm{x})$.
$\mathbf{R}=$ The set of real numbers
$\mathbf{R}^{\mathrm{N}}=\mathrm{N}$-fold Cartesian product of R with itself.
$\mathbf{R}^{\mathrm{N}}=\mathrm{R} \times \mathrm{R} \times \mathrm{R} \times \ldots \times \mathrm{R}$, where the product is taken N times.
The order of elements in the ordered N -tuple ($\mathrm{x}, \mathrm{y}, \ldots$) is essential. If $x \neq y,(x, y, \ldots) \neq(y, x, \ldots)$.

\mathbf{R}^{N}, Real \mathbf{N}-dimensional Euclidean space

Read Starr's General Equilibrium Theory, Chapter 7.
$\mathrm{R}^{2}=$ plane
$\mathrm{R}^{3}=3$-dimensional space
$\mathrm{R}^{\mathrm{N}}=\mathrm{N}$-dimensional Euclidean space
Definition of R:
R = the real line
$\pm \infty \notin \mathrm{R}$

$$
+,-, \times, \div
$$

closed interval : $[\mathrm{a}, \mathrm{b}] \equiv\{\mathrm{x} \mid \mathrm{x} \in \mathrm{R}, \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$.
R is complete. Nested intervals property: Let $x^{v}<y^{v}$ and $\left[x^{v+1}, y^{v+1}\right] \subseteq\left[x^{v}, y^{v}\right]$, $v=1,2,3, \ldots$. Then there is $z \in R$ so that $z \in\left[x^{v}, y^{v}\right]$, for all v.
$R^{N}=\mathrm{N}$-fold Cartesian product of R.
$x \in R^{N}, x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
X_{i} is the ith co-ordinate of x .
$\mathrm{x}=$ point (or vector) in R^{N}
Algebra of elements of R^{N}

$$
x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{N}+y_{N}\right)
$$

$\mathbf{0}=(0,0,0, \ldots, 0)$, the origin in N -space
$x-y \equiv x+(-y)=\left(\mathrm{x}_{1}-\mathrm{y}_{1}, \mathrm{x}_{2}-\mathrm{y}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}-\mathrm{y}_{\mathrm{N}}\right)$
$t \in R, x \in R^{N}$, then $t x \equiv\left(t x_{1}, t x_{2}, \ldots, t x_{N}\right)$.
$x, y \in R^{N}, x \cdot y=\sum_{i=1}^{N} x_{i} y_{i}$. If $\mathrm{p} \in \mathrm{R}^{\mathrm{N}}$ is a price vector and $\mathrm{y} \in \mathrm{R}^{\mathrm{N}}$ is an economic action, then $\mathrm{p} \cdot \mathrm{y}=\sum_{n=1}^{N} p_{n} y_{n}$ is the value of the action y at prices p .

Norm in R^{N}, the measure of distance

$$
|x| \equiv\|x\| \equiv \sqrt{x \cdot x} \equiv \sqrt{\sum_{i=1}^{N} x_{i}^{2}} .
$$

Let $x, y \in R^{N}$. The distance between x and y is $\|x-y\|$.

$$
\begin{aligned}
& |\mathrm{x}-\mathrm{y}|=\sqrt{\Sigma_{i}\left(x_{i}-y_{i}\right)^{2}} . \\
& \|x-y\| \geq 0 \text { all } x, y \in R^{N} \\
& |\mathrm{x}-\mathrm{y}|=0 \text { if and only if } \mathrm{x}=\mathrm{y} .
\end{aligned}
$$

Limits of Sequences

$\mathrm{x}^{v}, v=1,2,3, \ldots$,
Example: $x^{v}=1 / v . \quad 1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots \quad x^{v} \rightarrow 0$.
Formally, let $x^{i} \in R, i=1,2, \ldots$. Definition: We say $x^{i} \rightarrow x^{0}$ if for any $\varepsilon>0$, there is $q(\varepsilon)$ so that for all $q^{\prime}>q(\varepsilon),\left|x^{q^{\prime}}-x^{0}\right|<\varepsilon$.

So in the example $x^{v}=1 / v, q(\varepsilon)=1 / \varepsilon$
Let $x^{i} \in R^{N}, i=1,2, \ldots$. We say that $x^{i} \rightarrow x^{0}$ if for each co-ordinate $n=1,2, \ldots, N, x_{n}^{i} \rightarrow x_{n}^{0}$.

Theorem 7.1: Let $x^{i} \in R^{N}, i=1,2, \ldots$. Then $x^{i} \rightarrow x^{0}$ if and only if for any ε there is $q(\varepsilon)$ such that for all $q^{\prime}>q(\varepsilon),\left\|x^{q^{\prime}}-x^{0}\right\|<\varepsilon$.
x^{0} is a cluster point of $S \subseteq \mathbf{R}^{N}$ if there is a sequence $\mathrm{x}^{v} \in \mathrm{R}^{\mathrm{N}}$ so that $\mathrm{x}^{v} \rightarrow \mathrm{x}^{0}$.

Open Sets

Let $X \subset R^{N} ; \mathrm{X}$ is open if for every $x \in X$ there is an $\varepsilon>0$ so that $\|x-y\|<\varepsilon$ implies $y \in X$.

Open interval in R: $(\mathrm{a}, \mathrm{b})=\{\mathrm{x} \mid \mathrm{x} \in \mathrm{R}, \mathrm{a}<\mathrm{x}<\mathrm{b}\}$
ϕ and R^{N} are open.
Closed Sets
Example: Problem - Choose a point x in the closed interval [a, b] (where $0<\mathrm{a}<\mathrm{b}$) to maximize x^{2}. Solution: $x=b$.
Problem - Choose a point x in the open interval (a, b) to maximize x^{2}. There is no solution in (a, b) since $\mathrm{b} \notin(\mathrm{a}, \mathrm{b})$.

A set is closed if it contains all of its cluster points.
Definition: Let $X \subset R^{N}$. X is said to be a closed set if for every sequence $\mathrm{x}^{v}, v=1,2$, $3, \ldots$, satisfying,
(i) $x^{v} \in X$, and
(ii) $x^{v} \rightarrow x^{0}$
it follows that $x^{0} \in X$.
Examples: A closed interval in $\mathrm{R},[\mathrm{a}, \mathrm{b}$] is closed
A closed ball in R^{N} of radius r, centered at $c \in R^{N},\left\{x \in R^{N}| | x-c \mid \leq r\right\}$ is a closed set.

A line in R^{N} is a closed set
But a set may be neither open nor closed (for example the sequence $\{1 / v\}, v=1$, $2,3,4, \ldots$ is not closed in R, since 0 is a limit point of the sequence but is not an element of the sequence; it is not open since it consists of isolated points).

Note: Closed and open are not antonyms among sets. ϕ and R^{N} are each both closed and open. For a YouTube reference: www.youtube.com/watch?v=SyD4p8_y8Kw

Let $\mathrm{X} \subseteq \mathrm{R}^{\mathrm{N}}$. The closure of X is defined as

$$
\overline{\mathrm{X}} \equiv\left\{\mathrm{y} \mid \text { there is } \mathrm{x}^{v} \in \mathrm{X}, v=1,2,3, \ldots \text {, so that } \mathrm{x}^{v} \rightarrow \mathrm{y}\right\}
$$

For example the closure of the sequence in $R,\{1 / v \mid v=1,2,3,4, \ldots\}$ is
$\{0\} \cup\{1 / v \mid v=1,2,3,4, \ldots\}$.

Theorem 7.2: Let $X \subset R^{N}$. X is closed if $\mathrm{R}^{\mathrm{N}} \backslash \mathrm{X}$ is open.
Proof: Suppose $R^{N} \backslash X$ is open. We must show that X is closed. If $X=R^{N}$ the result is trivially satisfied. For $X \neq R^{N}$, let $x^{v} \in X, x^{\nu} \rightarrow x^{0}$. We must show that $x^{0} \in X$ if $R^{N} \backslash X$ is open. Proof by contradiction. Suppose not. Then $x^{0} \in R^{N} \backslash X$. But $R^{N} \backslash X$ is open. Thus there is an ε neighborhood about x^{0} entirely contained in $R^{N} \backslash X$. But then for v large, $\mathrm{x}^{v} \in \mathrm{R}^{\mathrm{N}} \backslash \mathrm{X}$, a contradiction. Therefore $\mathrm{x}^{0} \in \mathrm{X}$ and X is closed. QED

Theorem 7.3: 1. $X \subset \bar{X}$
2. $X=\bar{X}$ if and only if X is closed.

Bounded Sets
Def: $K(k)=\left\{\left.x\right|_{x} \in R^{N},\left|x_{i}\right| \leq k, i=1,2, \ldots, N\right\} \quad=$ cube of side 2 k (centered at the origin).
Def: $X \subset R^{N} . \mathrm{X}$ is bounded if there is $k \in R$ so that $X \subset K(k)$.

Compact Sets

THE IDEA OF COMPACTNESS IS ESSENTIAL!
Def: $X \subset R^{N}$. X is compact if X is closed and bounded.
Finite subcover property: An open covering of X is a collection of open sets so that X is contained in the union of the collection. It is a property of compact X that for every open covering there is a finite subset of the open covering whose union also contains X . That is, every open covering of a compact set has a finite subcover.

Boundary, Interior, etc.
$X \subset R^{N}$, Interior of $X=\{y \mid y \in X$, there is $\varepsilon>0$ so that $\|x-y\|<\varepsilon$ implies $x \in X\}$ Boundary $X \equiv \bar{X}$ Interior X

Set Summation in R^{N}
Let $\mathrm{A} \subseteq \mathrm{R}^{\mathrm{N}}, \mathrm{B} \subseteq \mathrm{R}^{\mathrm{N}}$. Then

$$
A+B \equiv\{x \mid x=a+b, a \in A, b \in B\}
$$

The Bolzano-Weierstrass Theorem, Completeness of R^{N}.
Theorem 7.4 (Nested Intervals Theorem): By an interval in R^{N}, we mean a set I of the form $I=\left\{\left(x_{1}, x_{2}, \ldots, x_{N}\right) \mid a_{1} \leq x_{1} \leq b_{1}, a_{2} \leq x_{2} \leq b_{2}, \ldots, a_{N} \leq x_{N} \leq b_{N}, a_{i}, b_{i} \in R\right\}$. Consider a sequence of nonempty closed intervals I_{k} such that

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots \supseteq I_{k} \supseteq \ldots
$$

Then there is a point in R^{N} contained in all the intervals. That is, $\exists x^{o} \in \bigcap_{i=1}^{\infty} I_{i}$ and therefore $\bigcap_{i=1}^{\infty} I_{i} \neq \phi$; the intersection is nonempty.

Proof: Follows from the completeness of the reals, the nested intervals property on R.
Corollary (Bolzano-Weierstrass theorem for sequences): Let $x^{i}, \mathrm{i}=1,2,3, \ldots$ be a bounded sequence in R^{N}. Then x^{i} contains a convergent subsequence.

Proof 2 cases: x^{i} assumes a finite number of values, x^{i} assumes an infinite number of values.

It follows from the Bolzano-Weierstrass Theorem for sequences and the definition of compactness that an infinite sequence on a compact set has a convergent subsequence whose limit is in the compact set.

Filename: 02-01.eps Percentage: 100 Height: 10.95747pc Width: 16.72897pc

$$
\# 12:
$$

Filename: 02-02.eps Percentage: 100
Height: 13.63411pc Width: 16.89626pc
\# 13:

